(x-4)^2/3=64

Simple and best practice solution for (x-4)^2/3=64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-4)^2/3=64 equation:


x in (-oo:+oo)

((x-4)^2)/3 = 64 // - 64

((x-4)^2)/3-64 = 0

((x-4)^2)/3+(-64*3)/3 = 0

(x-4)^2-64*3 = 0

x^2-8*x-176 = 0

x^2-8*x-176 = 0

x^2-8*x-176 = 0

DELTA = (-8)^2-(-176*1*4)

DELTA = 768

DELTA > 0

x = (768^(1/2)+8)/(1*2) or x = (8-768^(1/2))/(1*2)

x = (16*3^(1/2)+8)/2 or x = (8-16*3^(1/2))/2

(x-((8-16*3^(1/2))/2))*(x-((16*3^(1/2)+8)/2)) = 0

((x-((8-16*3^(1/2))/2))*(x-((16*3^(1/2)+8)/2)))/3 = 0

((x-((8-16*3^(1/2))/2))*(x-((16*3^(1/2)+8)/2)))/3 = 0 // * 3

(x-((8-16*3^(1/2))/2))*(x-((16*3^(1/2)+8)/2)) = 0

( x-((16*3^(1/2)+8)/2) )

x-((16*3^(1/2)+8)/2) = 0 // + (16*3^(1/2)+8)/2

x = (16*3^(1/2)+8)/2

( x-((8-16*3^(1/2))/2) )

x-((8-16*3^(1/2))/2) = 0 // + (8-16*3^(1/2))/2

x = (8-16*3^(1/2))/2

x in { (16*3^(1/2)+8)/2, (8-16*3^(1/2))/2 }

See similar equations:

| 12a/10=50 | | k^2=3(3-x) | | 10/22=x/33 | | 15d-2d-4d=9 | | 10=12-11r | | 9x-116=-2x+148 | | -5c+2=23 | | -16+11x=14+10x | | 28y-14=21y+10.5 | | -5c+2=-21 | | 3x^2+x^2-3x-1=0 | | -65-x=-6x+20 | | x-16=-22x | | 17(6c-1)-10=100c+17 | | 4x^3-456x=0 | | -81+12x=171-9x | | 3x+7=11+2x | | h(x)=-x^4+5x^2-4 | | 2x+0.5x-10=10 | | w^2+10w-2475=0 | | 8/5(t-6)=0.4 | | -x-58=-6x+47 | | .5x+3.5=4x-7 | | 2x^2-12x-56=0 | | 5x-63=-3x+33 | | 54/100 | | 4/12=18/x | | 1/4q=20 | | -19-7x=39-9x | | 2.20x=12 | | -5(t-1)+7t=5t-3 | | log(10-4x)=log(10x-3x) |

Equations solver categories